Epilepsy Seizure Detection Using Wavelet Support Vector Machine Classifier
نویسندگان
چکیده
Epilepsy is a perilous neurological disease covering about 4-5% of total population of the world. Its main characteristics are seizures which occur due to certain disturbance in brain function. During epileptic seizures the patient is unaware of their physical as well as mental condition and hence physical injury may occur. Proper health care must be provided to the patients and this can be achieved only if the seizures are detected correctly in time. In this dissertation work, a system is designed using wavelet decomposition method and different training algorithms to train the neural network for classification of the EEG signals. The system was tested and compared with Support Vector Machine (SVM) classifier. The system accuracy comes out to be 99.97%.
منابع مشابه
Electroencephalogram Signal Classification for Automated Epileptic Seizure Detection Using Genetic Algorithm
BACKGROUND Epilepsy causes when the repeated seizure occurs in the brain. Electroencephalogram (EEG) test provides valuable information about the brain functions and can be useful to detect brain disorder, especially for epilepsy. In this study, application for an automated seizure detection model has been introduced successfully. MATERIALS AND METHODS The EEG signals are decomposed into sub-...
متن کاملEEG Signal Analysis for Epileptic Seizure Detection Using Soft Computing Techniques
Seizure activity takes place due to an irregular excessive electrical action in the human brain. The electrical activity in the form of brain waves (signals) can measured by using the device called Electroencephalogram (EEG). In this paper, we have reviewed our work so far made regarding EEG signals. Comparative between Artificial Neural Network (ANN) and Support Vector Machine (SVM) this revie...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملUsing Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016